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Microwave-Induced Auditory Effect in a
Dielectric Sphere

NIKOLAOS K. UZUNOGLU, MEMBER, IEEE, AND SPYRIDON [. POLYCHRONOPOULOS

Abstract —The acoustic pressure wave generation inside an electromag-
netically lossy dielectric sphere from an incident microwave pulse is
analyzed rigorously. The pressure wave equation, derived by using the
first-order approximation of a thorough formulation on microwave-induced
thermoacoustic effect in dielectrics, is employed. The inhomogeneous
hyperbolic type pressure wave differential equation is solved by employing
a Green’s function theory approach. The inhomogeneous term of this
equation is proportional to the time derivative of the absorbed power ()
per unit volume inside the sphere. The boundary conditions on the dielec-
tric sphere~air interface are taken into account. The power P is computed
by applying the exact Mie theory solution for the dielectric sphere. Two
types of acoustic waves are derived inside the sphere: a) a transient burst
type pressure wave, corresponding to the free-space contribution of Green’s
function, and b) an infinite set of damped oscillations related to the normal
acoustic modes of the spherical resonator. Numerical results are computed
and presented for several cases.

I. INTRODUCTION

ICROWAVE pulses impinging on the heads of

mammalian animals and humans have been shown
to generate audible sounds [1]-[4]. It has been shown that
a conventional bone conduction mechanism is involved in
sensing microwave pulses [S]-[7].

Several physical processes such as radiation pressure,
electrostriction, and thermal expansion have been pro-
posed in the past to explain the hearing of microwave
pulses {7]-{10]. Among these phenomena the thermoelastic
expansion mechanism has found wide acceptance [11]-{13].

Recently the microwave-induced thermoacoustic effect
in dielectrics and its coupling to external media has been
analyzed by applying a thorough thermodynamical formu-
lation [14]. Highly nonlinear differential equations have
been derived in the general case. Assuming small ampli-
tude waves and isotropic acoustic properties of the dielec-
tric medium, the fundamental equations describing the
coupling between electromagnetic and acoustic waves have
been simplified considerably and linear equations have
been obtained [14]. In the present paper the linear pressure
wave equation is solved by applying a Green’s function
approach when an arbitrary sphere of arbitrary size is
illuminated by a microwave pulse. In this context the
dielectric sphere is taken to be homogeneous in terms of
the electromagnetic and acoustic properties. The proposed
solution furnishes results that can be interpreted easily. It
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Fig. 1 Ilumination of a dielectric sphere from a microwave pulse.

is shown that two types of acoustic waves are generated,
corresponding to a free-space transtent acoustic pulse and
an infinite summation of excited spherical cavity damped
normal mode waves similar to those of [12] and [13].

II. FORMULATION OF THE ACOUSTIC FIELD
BOUNDARY VALUE PROBLEM

In Fig. 1 the geometry of the dielectric sphere il-
luminated from a microwave pulse is given. The dielectric
sphere electromagnetic properties are defined in terms
of the complex relative permittivity €, while the whole
space is assumed to be nonmagnetic, with p=p,=
47 X1077 (H/m) being the free-space permeability. The
free-space (air region) permittivity is € =€, =10"°/(367)
(F/m). The radius of the dielectric sphere « is taken to be
arbitrary in comparison with the incident wave free-space
wavelength A.

Following the [14, eq. (28)], the pressure field p = p(r. 1)
induced inside and outside of the dielectric sphere satisfies
the wave equation

aP(r,t)

at (1)

82
|57 20)w2]prn =
at

where c¢(r) is the velocity of the acoustic waves and,
because of the spherical geometry,

¢, forr<a

(1) ={ )

¢, forr>a

where ¢, and ¢, are the acoustic wave velocities inside the
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dielectric sphere and air regions, respectively. The right-
hand side of (1) is the source term and P(r,¢) is the
average electromagnetic power converted into heat per
unit volume (W/m’) inside the material medium. The
losses inside the air region are neglible and therefore P = 0
for > a. In order to compute the power density P for
r < a, the full-wave solution of the scattering of a plane
electromagnetic wave is employed in Section IV of this
paper. The proportionality constant C, appearing in the
right-hand side of (1) is related to the thermodynamic
quantities of the dielectric sphere and is given in [14]. In
addition to (1), the pressure field p(r,¢) on the r=a
discontinuity spherical surface should satisfy the following
boundary conditions (see [14, eq. (31)]:

p(r, ), _o=p(r t)l, s
1 3p(r1) 1 ap(r.2)

P1o ar B

(3)
P (4)

where p,, and p,, are the average mass densities of the
dielectric and air media, respectively.

In order to determine the pressure p(r,t), a Green’s
function approach will be employed. To this end, (1) is
rewritten as follows:

r=a+

, 1 92
7m0 6
where
[oN 3[F°(r t)
V("’t) 2( ) at (6)

The associated Green’s function G(r,r’/t—1") 1s re-
quired to satisfy the differential equation

5 1 92
(V " 30 28 )G(r r/t—t)=—=8(r—r)8(t—1)
™)

and, according to the causality principle,
G(r,r'/t—t)=0 fori<t. (8)
In physical terms G(r, ¥/t — ') is the acoustic responée
observed at the point » and the instant 7 for an elementary
excitation at the point r’ occurring at the instant ¢’ <f.
The boundary conditions to be satisfied on the r=a
spherical surface by the G(r,#'/t—1t") function will be
specified in the course of the analysis. In order to proceed
with the solution of (5), Fourier transformations of (5) and
(6) are taken along the ¢ time axis. Then,

(v2+62(r))p.(r) =—V,(r)
(v2+«Xr))G (r,r)=—8(r—r)

k(ry=w/c(r)
( po(r) p(r,1) )

(©)
(10)

(11)

where

G, (r, r’)) =F(G(r, v /1)

el )

e G(r,r'/t))e_]m' (12)
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The corresponding inverse Fourier transformations are
written easily as follows:

p(rm) | _
(G(r, r’/'r)) =F

1 + oo
= Py f_oo dw
Assuming the Green’s function G_(r, ¥’) is known, the

fundamental wave equation (9) can be solved. To this end,
according to Green’s theorem,

f',//’ dr’( 2. (PG (r,r)— G (r,r)V zpw("’))

p.(r) )
Gw(r, )

P.(r)
G, (r, 1)

) et (13)

= [[ dSxh-(p(R)VG,(r. R) = G,(r. R)Vp,(R))

(14)

where V is a volume enclosed inside a closed surface S, R
is the position vector, and 7 is the outward unit vector on
the surface S. The function p, (r') and G,(#, #") and their
first derivatives should be continuous inside the volume V.
Applying (14) separately for the cases when V is the
spherical volume of the dielectric medium and the infinite
air region, using the radiation condition for |R|— + o0,
substituting (9) and (10), and adding the two integrals, the
following relation is derived:

-p.(r)+ ff/ ar'G, (r,r )V, (r)

V(r'<a)

[ 3G, (r. 1)
= // dsR pw(r) _—(r;,/ .
S(r'=a) rea-
G, (r,r) ‘ ap(r’)
- ar’ r’=a+)~_ Gm(r,r) ar’ =

p(r)

-G, (r,r")

\
|). (15)

r'=a+)

If now, the boundary conditions to be satisfied at »’ = a by
the Green’s function are chosen such that

G, (r,r) aG, (r,r)
ar’ o

(16)
(17)

then the right-hand side of (15) is equal to zero and the
following simple result is obtained:

f/f dr'G,(r, ¥V, (r)

v(r'<a)

r=oa— r=a+

plOGw(r7 r’)[r’=a# zp20Gw(r’ r/)‘r’=a+

(18)

Polr)=

where the integration is carried out only over the spherical
volume since V,_(#") =0 for r’> «. The real pressure field
p(r,t) is derived from (18) by computing the inverse
Fourier transform with the aid of the convolution theo-
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p(r.1)=F(p,(r))

= fff dr’fj:dt'G(r,r’/t—t’)V(r’,t’)- (19)

This shows that the key point in computing the p(r, 1)
pressure field is to obtain the Green’s function G(r, '/
t —t’) satisfying the acoustic wave equation (10) and the
boundary conditions (16) and (17) on the r’ = & spherical
surface. This subject is treated in the next section.

1.

The source point r’ (see (7) and (10)) being always
inside the dielectric sphere, only the case when »’ < a will
be treated here. Then for r < a, inside the dielectric sphere
region, the Green’s function can be split into two terms:

G, (r,r)=GO(r,r)+ GO (r,r) (0<r<a) (20)

where GO(r, ") is the solution of the inhomogeneous
wave equation

(V2+xf)G£0)(r, r)y=—8(r—r) (21)

with k;=w/c, and 0 <r < + 0. Notice that GO(r, r) is
the free-space acoustic Green’s function. The second term
in (20) is needed to satisfy the appropriate boundary
conditions given in (16) and (17) and can be interpreted as
the reaction of the surface discontinuity at r=a. It is
evident from (10) and (21) that

(v2+.2)GO(r,r)=0
In the region r > a, outside of the sphere,

G, (r,r)=GP(r,r)

DIELECTRIC SPHERE ACOUSTIC GREEN’S FUNCTION

(0<r<a). (22)

and
(V2 +63)GP(r,r) =0 (23)

where k,=w/c, and GP(r, r’) should satisfy the radia-
tion conditions for r — + co.

The solution of (21) is well known and can be written
either in a closed form or as an expansion into spherical
waves [15] (both given here):

e /lr=r
0 —
) =

jK1 + 00 n
Wn=0m=0
(n—m)!
: an('ﬁ& VAP (kyrs )

“P"(cos8) P (cos8’)cos(m(p—¢’)) (24)

where (7,8, ¢) and (, ', ¢’) are the spherical coordinates
of the observation » and source r’ points, respectively. The
J.(+) and hP(-) are the spherical Bessel and Hankel
(second kind) functions, respectively, and P/(-) is the
associated Legendere polynomial of nth degree and mth
order.
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The notation r_ and r, used in (24) is defined as
follows:

ro=min(r,r’)
r. =max(r,r’).

Finally the coefficient ¢, is

(1
€n= {1

The solutions of (22) and (23) can be written in terms of
spherical waves in the following form:

for m=20
for m=1,2,---.

j’cl + o0 n
GWO(r,r)=-"— Y e,a,(2n+1)
R

n—m)!
: 'E'n+—m;!jn("1”)jn(“1”/)

“P"(cos8) P(cos 6") cos (m(@ — ¢'))  (25)

ﬂ% + o0 n
GO(r,r)=— . > ¥ €,,0,(2n+1)
a

n=0m=0
(n—m)! _
; *—hf)(xzr)]n(xlr’)
(n+m)!

“P,"(cos @) P(cos 6") cos (m(p — ¢')). (26)

Notice that the radial wave functions j,(k,r) and
h{P(k,r) are dictated by the requirement of a finite value
of the field at » = 0 and the radiation condition at » — + co.
In order to determine the unknown a, and b, coefficients,
the boundary conditions given in (16) and (17) should be
satisfied. Then employing the orthogonality properties of
the p,"(cos @) and cos(me), sin(me) functions [15] and
after a lengthy algebra, it is found that

12 (kye) hP (K 0) 105 — B (x10) 17D (e50) pr gk
hy® (k) ji, (k10) kp010 — Jn CGer@) B2 (e y0) e, 9
(27)
The b, expansion coefficient is not given here, since in the

following analysis the G and GV functions will be
employed exclusively.

n=

IV.  COMPUTATION OF THE p(r, t) PRESSURE FIELD
FOR r < a

In order to determine the p(r,t) pressure field inside
the dielectric sphere given in (19), in addition to the
Green’s function G(r, ¥’ /t —t'), it is required to know the
source term V(r,¢) defined in (6). Then it is necessary to
compute the absorbed power per unit volume by using the
well-known formula

P(r,t)=%E(r)-E*(r) (28)
where 6 = — we, Im(e,) is the electrical conductivity of the
dielectric medium and E(r) is the complex (phasor) elec-
tric field inside the sphere » < a. The E(r) can be com-
puted easily by using the well-known Mie theory of
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scattering of a plane wave [16] from a dielectric sphere. To
this end assume an incident plane wave propagating along
the z axis and polarized linearly parallel to the x axis.
Then the incident electric field is

E,  (r) = £Ue /korg %0 (29)

where U is the wave amplitude, w, the electromagnetic
field angular frequency, and k= wyeyp, is the free-space
propagation constant. Substituting into (28) the expression
for the electric field as given by the Mie solution and
rearranging the terms, it is found that

E(r)-E*(r) =|E(r)|?

= ——(cos’@F,(r,8) +sin’ F,(r,0)) (30)
k()kr'

where the functions Fi(r,#) and F,(r,#) are infinite series
and their expressions are given in the Appendix. For
pulsed microwave signals, in determining the V{(r, t) source
function the envelope of the incident pulsed wave should
be taken into account. If the pulse duration T, is very
large in comparison with the microwave signal period
(Ty=27/w, < T,), the absorbed power per unit volume
can be computed by multiplying (28) by the pulse envelope
shape I1(¢/T,). The ideal pulse envelope function II(x) is
defined as follows:

) -{, (31)

Then the source function V(r, t) by employing (6) can be
written as follows: '

for0<x<1
otherwise.

UZ
kle,|
+sin’pF,(r,8))(8(r)— 8(¢— 7},)) (32)

where the derivative of the unit step function is used twice.

(]
V(r,t) =C05 (cos?@F,(r,0)

A. Free-Space Term Contribution p,(r,t)

Following (24) and the definition of the inverse Fourier
transform (13),

GO(r,r/t—1")

r—r|
expl jol|t—1t'—
1 + 00 Cy
———f dw
—o ‘

" 8n? |r—r|

B(t—rt’—lr—rll)
= — a /. (33)

4air—r'|

Then on substituting (32) and (33) into (19) it is found that
(cos?Fy(r,0) +sin*pF,(r,0))

P(r.0) =0, [[[ ar

-
o % a) 4alr—r'|

.(3(1— ":ril)—s(t—Tp—’——V:r/l)) (34)
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Cou 2

sy

The integrals in (34), because of the &(-) functions
appearing under the integral sign, can be reduced to two-
dimensional integrals. Indeed, by choosing as an origin the
specific observation point » =r and remembering that
only the points |r| < a should be taken into account, the
three-dimensional integral in (34) is reduced to surface
integrals to be computed over two spherical or spherical
cap surfaces. These two surfaces correspond to the geomet-
ric loci defined by conditions (35) and (36), respectively,
and are illustrated in Fig. 2. Of course the additional
condition |r'| < « should also be satisfied. Therefore, it is
evident that for sufficiently large ¢ > T,, Py(r,t) =0 and
there is no contribution from the GP(r/r’) term. This
shows that the rising edge of the pulse at ¢ = 0 will excite
an acoustic phenomenon starting at ¢ =0 and lasting until
t=ty = (a+|r])/c, while the corresponding time period
for the falling edge will be from =7, to ¢=
ty+ T, In Fig. 2 the surfaces contributing to the py(r, 1)
pressure field are illustrated at different characteristic time
instants. Therefore, instead of (34), the py(r,t) field is
computed from

Py(r,t) = :?—O[clt /f ds'®(0’,9',r) (t/T,)

fr—rl=ct

aT

—e(1-T,) [[ ase (6”9, r")
Si

Ir=rl=a~T,)

-H((t—T,,)/Tp)] (35)

where
D(0',¢',r') =cos?@’Fy(r',0") +sin*¢'F,(r',8)
and the s, and s surfaces are defined in Fig. 2.

B. Cavity Mode Contributions P,(r,t)

On substituting (32) into (19), inserting for G(r,r'/
t—ty=GY(r,r'/t—1"), and introducing the inverse
Fourier transformation given in (13), it is found that

pl(r,t)=% fff dr’fj:dw

(r"<a)

-(e""’u(t)~ el Tyt — 7;,))

GO(r,r)(cos? ' Fy(r',8") +si2 ¢’ Fy (', 0")).

(36)

The expression for G{(r, ') has already been determined
and is given by (25) and (27). To this end substituting (25)
into (36), the integration over the ¢’ variables can be

performed easily. Furthermore the integral for the « vari-
able can be determined by using contour integration the-
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(b)

Fig. 2. Spherical surfaces S, and §, showing the contributions to the
Po(r, ¢) field at three different instants. Assuming the microwave pulse
starts at 1 =0 and lasts until 1 =T, the three cases are (a) 0 <7< T,;
(b) T, <t <1y; and (¢) by <t<ty +T,

ory. Exafnina_tion of the a, = a,(w) dependence to the w
complex variable shows that there are an infinite number
of poles corresponding to the roots of the equation

w v
i Za] =84, 00) (37)
(4]
where
¢y p
A =22 (38)
‘ €1 Puo
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and

i bt PREY Badd
n Cl n 02

wa
G

Notice that when the external dielectric medium is air,
because p,, < pyy and ¢, < ¢y, the right-hand side of (37)
is a perturbation term. Therefore an iterative procedure
starting from the zeroth-order solution
W0
W22 =0

5

4,(0) =

(39)

(40)

can be employed. The integer /=1,2,--- denotes the
order of the root for a specific integer n. When A_+ 0, the
roots of (37) are complex numbers and always Im(w,,) > 0.
Furthermore it can easily be shown that if & = «,, is a root
of (37), then w=— wl is also a root. The integrand
function of (36) vanishes when |w| > + c0 and Im(w) > 0.
Therefore a complex contour integration procedure can be
applied to compute the integral over the w variable, lead-
ing to the result

QO il L6 w .
t)=— 2n+1 dr’'df’r’*sin§’
plrt) =g X @uan) [ [ drdorsin

1 pn=
. {Pn(o) (cos8) PO (cos 6")(F(r’,8") + Fy(r',0")

(n—2)!
N P (cosd) PO '
+(n+2)!P" (cos8) PP (cos )

(F(r',0")— F(r',0)) cos2q>}

ad § p(wnl’t)
- ) Re| —7—— (41)
I=0 aQ(o‘))
dow —a,
where
fwr)y [ wr
p(w,t)=—wjn(—)1n —
51 58
-(ej“”u(t)—ef“(’“Tﬂ)u(t—ZI;))
hg)(ﬂx_)h;a)(ﬂ)
wa c c
|2 a =2 )
91 jAze) La
n Cz
. wa N
00) =1 2] -4, 00, @)
1

V. NUMERICAL RESULTS AND DISCUSSION

Numerical computations have been performed by apply-
ing the analytical results given in (35) and (41) for the
Po(r, 1) and p,(r,1) contributions, respectively. In both
cases, the two-dimensional integrals encountered are com-
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Fig. 3. Free-space py(r,t) contribution pressure field variatiod with
time at two points on the surface of the dielectric sphere.

puted numerically by utilizing a multisegment 12 point
Gaussian quadrature formula. Extensive convergence tests
have been performed to ensure convergence.

The computations are carried for a dielectric sphere of
a =7 cm radius, and the incident pulse carrier frequency is
taken to be (w,/27) =432 MHz with a 7, =10 ps pulse
width. The complex relative permittivity of the sphere is
taken to be equal to that of water ¢, = 78— j1.25 at this
frequency. The acoustic properties of the material and air
media are defined in terms of the propagation frequencies
¢;=1510 m/s and ¢, = 373 m/s, respectively. The propor-
tionality constant C, in (1) is found to be [14] C, =
2114.036. Finally the average mass densities of the material
and air media are taken to be p,,=10° kg/m’ and p,, =
1.295 kg/m’, respectively.

In Fig. 3 the variation of the py(r, t) free-space contri-
bution is presented on the surface of the dielectric sphere
at two different observation points. The transient phenom-
enon lasts 102.7 us from the beginning of the microwave
pulse. There is a significant difference between the two
waveforms.

In order to determine the acoustic cavity mode contribu-
tions, the complex w=w,, (n=0,1,2,---; /=12,--)
roots of (37) should be determined in the first place. In
Fig. 4 the spectra of the complex w = w,; resonance fre-
quencies are presented on a complex plane. The lowest
“mode is found to be very close to the resonance frequency
of the stress-free surface sphere, that is,

7]y

—~—

W = (44)
which is in agreement with the predictions of Lin [17].
Furthermore if the lowest mode is considered separately,
the corresponding damped wave packet from (41) and (42)
is determined to be proportional to

—wh(t—T,)

— oy T, R R
e [( e~ “0r cos gy — COS ((po1 - woﬂ},) COS Wy

~ (efw(’nTp si g, — sin (%1 - w(’flTp)) sin w{flt] (45)

where 1 > T, wy, = wfj + jwl;, and @y, is a phase constant.
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Fig. 4. Complex resonance frequencies for ¢; =1510 m/s, ¢, =373
m/s, and a= 7 cm.

Then computing the amplitude of this waveform by apply-
ing standard trigonometry rules, it is found that the ex-
pression

1/2
e"“él(’_Tp)[e_z“’{“T ~2cos (Wl T, ) e~ b +1] ’ (46)
Np

determines the dependence of the wave amplitude on the
incident pulse width. Therefore when 7, —» 0 the induced
amplitude is zero. Provided that w; << wgj, when w{T, =~ 7
the dominant acoustic mode amplitude takes it peak value.
If the acoustic losses were also incorporated in the analy-
sis, then ), would be significantly larger than those
presented in Fig. 4. In this case when w&]} > 1 the wave
amplitude becomes independent of the pulse width 7.
Observe that in qualitative terms, the result present in (46)
for the dependence of the dominant mode amplitude on
the incident pulse width is in very good agreement with the
experimental results obtained by Chou and Guy [3]. Notice
that the incident microwave peak power hearing threshold
is proportional to the inverse of the quantity given in (46).
Therefore, for narrow incident pulses, higher peak powers
are needed to cause acoustic sensation, while when T, is
sufficiently large the acoustic threshold is almost indepen-
dent of the pulse width (see [3, table IJ).

The pressure waveforms of the cavity mode contribu-
tions have been also computed by including all the signifi-
cant mode amplitudes. In Fig. 5 the variation of the
pi(r, t) pressure is presented at three specific points, The
observed waveforms are very similar with those given in
[13, fig. 3].

VI. CONCLUSIONS

The microwave-induced auditory effect in a dielectric
sphere has been analyzed in detail. It is shown that an
impinging pulse modulated microwave signal induces two
types of pressure waves inside a dielectric sphere, namely a
transient-type short-duration acoustic wave and a set of
resonance modes belonging to the spherical acoustic reso-
nator. The properties of these waves are investigated thor-
oughly.
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Fig. 5. Variation of the cavity mode p,(r, t) contribution with time at
three points of the dielectric sphere.

APPENDIX
EXPRESSIONS FOR THE F(r,8) AND F,(r, ) FUNCTIONS

E(r)P =

7 I[cosz<pF1(r,0)+sin2<pF2(r,0)] (A1)
K2le,

Fy(r.8) = [ i;ilfo(n)fl(n,r,o)}

+[ ilfo(”)fz("’r,a)] (A2)
F2(r’0)=[ ilfo(n)f3(nar70):l (A3)
. 2n+1
fo(n) =(=) w(n s 1) (Ad)
fin,r,0) = chP,}(cosﬂ)(nz +n) (A5)
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P}(cos®)

—Sin—a‘ﬂn(m"’)

f2(n’r’0) =dn
L, (mkr
—c,,Pnl’(cosﬂ)sinH[m:cjn’(m:cr)+ﬁ(r—)]
(A6)
fs(n,r,0)=d, P (cos8)sindj, (mxr)

P(cos @) y
B mi j! (mer) +

jn(mw)]
(A7)

oy [P ()] = H (k) L3, ()]

STACT EZLIO) T CO A e

(A8)

5 (k) [xh® ()], = kP (k) [ 7, (%)] oo

B,
d = 7
" ze pgu(mea) [ xh@ ()] o — hP (k) [37,(x)] e
(= jop,) (A9)
Zc= (lu‘O/foer)l/2 m= (er)l/2 (AlO)
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