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Microwave-Induced Auditory Effect in a
Dielectric Sphere
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Abstract — 1 SIe aCOUShC pressure wave generation 1nSUif2 an eleCtrOlUag-

netically Iossy dielectric sphere from an incident microwave pulse k
analyzed rigorously. The pressure wave equation, derived by using the
first-order approximation of a thoroughformulation on microwave-induced
thermoacoustic effect in dielectrics, is employed. The inhomogeneous

hyperbolic type pressure wave differential equation is solved by employing

a Green’s function theory approach. The inhomogeneous term of this

equation is proportional to the time derivative of the absorbed power (P)

per unit volume inside the sphere. The boundary conditions on the dielec-

tric sphere-air interface are taken into account. The power P is computed

by applying the exact Mle theory solution for the dielectric sphere. Two

types of acoustic waves are derived inside the sphere: a) a transient burst

type pressure wave, corresponding to the free-space contribution of Green’s

fnnction, and b) an infinite set of damped oscillations related to the normal

acoustic modes of the spherical resonator. Numericaf results are computed

and presented for several cases.

I. INTRODUCTION

M ICROWAVE pulses impinging on the heads of

mammalian animals and humans have been shown

to generate audible sounds [1]–[4]. It has been shown that

a conventional bone conduction mechanism is involved in

sensing microwave pulses [5]–[7].

Several physical processes such as radiation pressure,

electrostriction, and thermal expansion have been pro-

posed in the past to explain the hearing of microwave

pulses [7]–[10]. Among these phenomena the thermoplastic

expansion mechanism has found wide acceptance [11]–[13].

Recently the microwave-induced thermoacoustic effect

in dielectrics and its coupling to external media has been

analyzed by applying a thorough thermodynamical formu-

lation [14]. Highly nonlinear differential equations have

been derived in the general case. Assuming small ampli-

tude waves and isotropic acoustic properties of the dielec-

tric medium, the fundamental equations describing the

coupling between electromagnetic and acoustic waves have

been simplified considerably and linear equations have

been obtained [14]. In the present paper the linear pressure
wave equation is solved by applying a Green’s function

approach when an arbitrary sphere of arbitrary size is

illuminated by a microwave pulse. In this context the

dielectric sphere is taken to be homogeneous in terms of

the electromagnetic and acoustic properties. The proposed

solution furnishes results that can be interpreted easily. It
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Fig. 1 Illummatiors of a dielectric sphere from a microwave pulse,

is shown that two types of acoustic waves are generated,

corresponding to a free-space transient acoustic pulse and

an infinite summation of excited spherical cavity damped

normal mode waves similar to those of [12] and [13].

H. FORMULATION OF THE ACOUSTIC FIELD

BOUNDARY VALUE PROBLEM

In Fig. 1 the geometry of the dielectric sphere il-

luminated from a microwave pulse is given. The dielectric

sphere electromagnetic properties are defined in terms

of the complex relative permittivity ~, while the whole

space is assumed to be nonmagnetic, with p = g ~s

47r X 10-7 (H/m) being the free-space permeability. The

free-space (air region) permittivity is c = COs 10-9/(36T )

(F/m). The radius of the dielectric sphere a is taken to be

arbitrary in comparison with the incident wave free-space

wavelength A.

Following the [14, eq. (28)], the pressure field p = p(r, t)

induced inside and outside of the dielectric sphere satisfies

the wave equation

( 1 dP(r, t)
:–CWV2 p(f’, t) =Co at (1)

where c(r) is the velocity of the acoustic waves and,

because of the spherical geometry,

{

c1 forr<a
c(r) =

c2 forr>a
(2)

where c1 and Cz are the acoustic wave velocities inside the
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dielectric sphere and air regions, respectively. The right-

hand side of (1) is the source term and P’(r,i) is the

average electromagnetic power converted into heat per

unit volume (W/m3) inside the material medium. The

losses inside the air region are neglible and therefore P’ = O

for r>a. In order to compute the power density P for

r<a, the full-wave solution of the scattering of a plane

electromagnetic wave is employed in Section IV of this

paper. The proportionality constant CO appearing in the

right-hand side of (1) is related to the thermodynamic

quantities of the dielectric sphere and is given in [14]. In

addition to (l), the pressure field p (r, t) on the r = a

discontinuity spherical surface should satisfy the following

boundary conditions (see [14, eq. (31)]:

p(r,~)lr=a-=p(rj~)l,=a+ (3)

1 dp(r, t) 1 dp(r, t)
— —_— (4)
PIO ar ,=a _ P20 Jr

r=a+

where plo and pzo are the average mass densities of the

dielectric and air media, respectively.

In order to determine the pressure p (r, t), a Green’s

function approach will be employed. To this end, (1) is

rewritten as follows:

where

Co dP(r, t)
V(r, t) = ~

c (r) dt “
(6)

The associated Green’s function G(r, r’/t – t‘) is re-

quired to satisfy the differential equation

( 1 d2
v2–~— )G(r, r’/t–t’) =–t3(r-r’)8 (t-t’)

c (r) 6Jt2

(7)

and, according to the causality principle,

G(r, r’/t–t’)=O fort <t’. (s)

In physical terms G(r, r’\t – t‘) is the acoustic response

observed at the point r and the instant t for an elementary

excitation at the point r’ occurring at the instant t‘< t.

The boundary conditions to be satisfied on the r = a

spherical surface by the G (r, r’/t – t‘) function will be

specified in the course of the analysis. h order to proceed

with the solution of (5), Fourier transformations of (5) and

(6) are taken along the t time axis. Then,

(V2+K2(r))p@(r) = - V@(r)

(v2+~2(r))G@(r, r’) = -8(r- r’)

where

K(r) =~/c(r)

(d2J=F(GK’L)

(9)

(lo)

(11)

(12)

The corresponding inverse Fourier

written easily as follows:

(;::;;T,)=F-l(J:::l,:

1419

transformations are

Assuming the Green’s function G@(r, r’) is known, the

fundamental wave equation (9) can be solved. To this end,

according to Green’s theorem,

j’~’)~r’(p.(r’)v2G.(r,r’)-G.(r,r’)v2po(r’))

(14)

where V is a volume enclosed inside a closed surface S, R

is the position vector, and fi is tha outward unit vector on

the surface S. The function p@(r’) and G@(r, r’) and their

first derivatives should be continuous inside the volume V.

Applying (14) separately for the cases when V is the

spherical volume of the dielectric medium and the infinite

air region, using the radiation condition for IR I -+ + co,

substituting (9) and (10), and adding the two integrals, the

following relation is derived:

– pw(r) + ~~~ dr’G@(r, r’)Vti(r’)
V(r’<a)

—— Jff)4(P.(o(q: ,,=a_ ,

13Gu(r, r’)

)(

dp(r’)
— .

c?r’
Gti(r, r’) ~

~f=a+ ~,=a—

6’p (r’) \
–Gu(r, r’)T

r’= a+) 1

(15)

If now, the boundary conditions to be satisfied at r’ = a by

the Green’s function are chosen such that

c3G@(r, r’) d(iti(r, r’)

dr’ ,,=a_=— ~r’
(16)

r’=a+

ploG@(r, r’)lr,=a_ =p,&o(r, r’)]r,=a+ (17)

then the right-hand side of (15) is equal to zero and the

following simple result is obtained:

where the integration is carried out only over the spherical

volume since V@(r’) = O for r’> a. The real pressure field

p (r, t ) is derived from (18) by computing the inverse

Fourier transform with the aid of the convolution theo-
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rem:

p(r, t)= F-’(pti(r))

= JJJdrJ::dtG(r,yf,,-t) v(r,t). (19)

1,

This shows that the key point in computing the p(r, t)

pressure field is to obtain the Green’s function G(r, r’/

t– t’)satisfying the acoustic wave equation (10) and the

boundary conditions (16) and (17) on the r’= a spherical

surface. This subject is treated in the next section.

III. DIELECTRIC SPHEREACOUSTIC GREEN’S FUNCTION

The source point r’ (see (7) and (10)) being always

inside the dielectric sphere, only the case when r’< a will

be treated here. Then for r <a, inside the dielectric sphere

region, the Green’s function can be split into two terms:

G@(r, r’) = Gj”)(r, r’) + G~lJ(r, r’) (O< r <a) (20)

where G~O)( r, r’) is the solution of the inhomogeneous

wave equation

(V2+~f)G~0)(r, r’) = -tl(r-r’) (21)

with K1= CO/Cl and O < r < + m. Notice that G~O)(r, r’) is

the free-space acoustic Green’s function. The second term

in (20) is needed to satisfy the appropriate boundary

conditions given in (16) and (17) and can be interpreted as

the reaction of the surface discontinuity at r = a. It is

evident from (10) and (21) that

(V2+fcf)G$)(r, r’) =0 (O<r< a). (22)

In the region r > a, outside of the sphere,

Go(r, r’) = G~2)(r, r’)

and

(v2+&)Gj2)(r, r’)=0 (23)

where Kz = u/c2 and G~2)(r, r’) should satisfy the radia-

tion conditions for r ~ + m.

The solution of (21) is well known and can be written

either in a closed form or as an expansion into spherical

waves [15] (both given here):

~–JK1lr–/

G(0)(r,J) = ~mlr_r~l

—
-: Y i 6.(2n+l)

~=om=()

. (n-m)!

(n+m)!
A(K1r< )~j2)(K1r> )

.P:(costl)P:(cos 6’)cos(m(g – q’)) (24)

where (r, 8, p) and (r’, 9‘, q’) are the spherical coordinates

of the observation r and source r’ points, respectively. The

~~(” ) and ~ L2)(”) are the spherical Bessel and Hankel
(second kind) functions, respectively, and P:(. ) is the

associated Legendere polynomial of n th degree and m th

order.

The notation r< and r> used in (24) is defined as

follows:

r< = min(r, r’)

r> = max(r, r’).

Finally the coefficient cm is

{

1 form=O
cm =

2 form =1,2, . . . .

The solutions of (22) and (23) can be written in terms of

spherical waves in the following form:

+W n
@)(r, r’) = –‘~ ~ z Cmana (2n + 1)

~ ~=om=o

. (n-m)!

(n+m)!
_L(hr)~n(hr’)

.P~(cos 0)1’:(cos(3’)cos (m(q – p’)) (25)

. (n-m)!
hqK2r)jn(K1r’)

(n+m)! n

.P:(cos6)P:(cos fl’)cos(m(p – p’)). (26)

Notice that the radial wave functions jn(K, r) and

lz(2J(K2r) are dictated by the requirement of a finite value

o; the field at r = O and the radiation condition at r ~ + m.

In order to determine the unknown a. and bmcoefficients,

the boundary conditions given in (16) and (17) should be

satisfied. Then employing the orthogonality properties of

the p~(cos @) and cos (m T), sin (mq) functions [15] and

after a lengthy algebra, it is found that

h(2)(Kla)h~(2)(KZa)P10KZA~(2)(K1a) lZ~2)(K2a)K1p20 – ~

a“ = h~(2)(K2a)j~(Kla) K2p10 – j~(K1a)lZj2)(K2a) K1p20 “

(27)

The b. expansion coefficient is not given here, since in the

following analysis the G~O~ and G~lj functions will be

employed exclusively.

IV. COMPUTATION OF THE p (r, t) PRESSURE FIELD

FORr<a

In order to determine the p ( r, t ) pressure field inside
the dielectric sphere given in (19), in addition to the

Green’s function G(r, r’/t – t’), itis required to know the

source term P’(r, t) defined in (6). Then it is necessary to

compute the absorbed power per unit volume by using the

well-known formula

P(r, t) = ~E(r).E*(r) (28)

where u = – Q( o Im ( (,) is the electrical conductivity of the

dielectric medium and E(r) is the complex (phasor) elec-

tric field inside the sphere r < a. The E(r) can be com-

puted easily by using the well-known Mie theory of
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scattering of aplanewave [16] from adielectric sphere. To

this end assume an incident plane wave propagating along

the z axis and polarized linearly parallel to the x axis.

Then the incident electric field is

‘i.C( r) = jue-Jkoze JoOt (29)

where U is the wave amplitude, QO the electromagnetic

field angular frequency, and ,kO= O= is the free-space

propagation constant. Substituting into (28) the expression

for the ‘electric field as given by the Mie solution and

rearranging the terms, it is found that

E(r). E*(r) = lE(r)12

= &(eos2@l(r,0)+sin2 F..(r,0)) (30)
o

where the functions 171(r, /3) and F2( r, d) are infinite series

and their expressions are given in the Appendix. For

pulsed microwave signals, in determining the V( r, t) source
function the envelope of the incident pulsed wave should

be taken into account. If the pulse duration TP is very

large in comparison with the microwave signal period

(T. = 2m/tio < TP), the absorbed power per unit volume

can be computed by multiplying (28) by the pulse envelope

shape II ( t/TP). The ideal pulse envelope function II(x) is

defined as follows:

{
r-f(x)= ; for O<x<l

(31)
otherwise.

Then the source function V(r, t) by employing (6) can be

written as follows:

j &(cos2rpF1(r,0)V(r, t) =Co–
0

+sin2qFz(r,0))( 8(t)–8(t– Tp)) (32)

where the derivative of the unit step function is used twice.

A. Free-Space Term Contribution po(r, t)

Following (24) and the definition of the inverse Fourier

transform (13),

G(0)(r, r’/t – t’)

1_,+.du’xp(’o(’-’’-Y))
= 8T2 .W Ir – r’]

(

~ ,_t, Ir-r’l

c1 )=,
4771~– r’1 “

(33)

Then on substituting (32) and (33) into (19) it is found that

(cos2@l(r,0)+sin2 @2(r,0))
Po(r, t) =Qo ~~~ dr’

U(r’<a) 4rlr – r’!

“(’(’-W’(’-TP-W) ’34)

where

coou 2

Qo=~i.
o

The integrals in (34), because of the 8(. ) functions

appearing under the integral sign, can be reduced to two-

dimensional integrals. Indeed, by choosing as an origin the

specific observation point r’= r and remembering that

only the points Ir’1 < a should be taken into account, the

three-dimensional integral in (34) @ reduced to surface

integrals to be computed over two spherical or spherical

cap surf aces. These two surfaces ccmrespond to the geomet-

ric loci defined by conditions (35) and (36), ~espectively,

and are illustrated in Fig. 2. Of course the additional

condition Ir’1 < a should also be satisfied. Therefore, it is

evident that for sufficiently large t>> T, Po(r, t) = O and
d’there is no contribution from the G: (r/r’) term. This

shows that the rising edge of the pulse at t = O will excite

an acoustic phenomenon starting iit t =’0 and lasting until

t= tM = (a+ Irl)/cl while the corresponding time period

for the falling edge will be from t= T, to t=

tM + TP. In Fig. 2 the surfaces contributing to the po(r, t )

pressure field are illustrated at different characteristic time

instants. Therefore, instead of (34), the po(r, t) field is

computed from

– Cl(t– Tp)J/ ds’@(f3’,Q7’>r’)

St Ir - r’l=cl(t – Tp)

1.~((-j\Tp), (35)

where

@(O’,qi, r’)= cos2cp’F1(r’, W) +sin2@F2(r’, O’)

and the s ~ and s ~ surfaces are defined in Fig. 2.

B. Cavity Mode Contributions P1(r, t)

On substituting (32) into (19), inserting for G(r, r’/

t – t‘) = G ‘l)(r, r’\t – t ‘), and introducing the inverse

Fourier transformation given in (13), it is found that

.(eJ’’fv(t)-eJo(f-T,)~i( t-T))
P

.G(l)(r, r’)(cos’rp’lj( r’, 6’)+ sin2cp’F2(r’, 6’)).6J

(36)

The expression for Gf)(r, r’) has already been determined

and is given by (25) and (27). To this end substituting (25)

into (36), the integration over the @ variables can be

performed easily. Furthermore the integral for the o vari-

able can be determined by using contour integration the-
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(a)

and

Notice that when the external dielectric medium is air,

because p20 << p10 and C2< cl, the right-hand side of (37)

is a perturbation term. Therefore an iterative procedure

starting from the zeroth-order solution

(40)

can be employed. The integer 1=1,2, . . . denotes the

order of the root for a specific integer n. When A, # O, the

roots of (37) are complex numbers and always Im ( u~l) >0.

Furthermore it can easily be shown that if u = OH1is a root

of (37), then u = – u~, is also a root. The integrand

function of (36) vanishes when Io I ~ + cc and Im( u ) >0.

Therefore a complex contour integration procedure can be

applied to compute the integral over the o variable, lead-

ing to the result

{
. P@)(cos e) Pp(cose’)(F1(r’, 8’) + F’(l”’, (3’)n

(b)

+ (n-2)f
“ p@)(Cos o ) P;2) (Cos 6’)

(n+2)! n

.( F,(r’, e9-F2(r’, e’)) cos2rp
)

where

(37)

(c)

Fig. 2. Sphericaf surfaces S ~ and S ~ showing the contributions to the

PO(~, ~) field at three different instants. Assuming the microwave puke
starts at f = O and lasts until t = TP, the three cases are (a) O < t < TP;

(b)~<t<t~;and(c)t~<t<t~+~.

my. Examination of the a ~ = a ~( w ) dependence to the u

complex variable shows that there are an infinite number

of poles corresponding to the roots of

V. NUMERICAL RESULTS AND DISCUSSION

(43)

Numerical computations have been performed by apply-

ing the analytical results given in (35) and (41) for the

(38) PO(7, t) and Pl(r, 1) contributions, respectively. In both
cases, the two-dimensional integrals encountered are com-
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Fig, 3. Free-space Dn(r, t) contribution pressure field vanatiofi with

time a; two p~ints on the surface OFthe dielectric sphere.

puted numerically by utilizing a multisegment 12 point

Gaussian quadrature formula. Extensive convergence tests

have been performed to ensure convergence.

The computations are carried for a dielectric sphere of

a = 7 cm radius, and the incident pulse carrier frequency is

taken to be (uo/27r) = 432 MHz with a TP = 10 ps pulse

width. The complex relative permittivit y of the sphere is

taken to be equal to that of water c.= 78 – jl.25 at this

frequency. The acoustic properties of the material and air

media are defined in terms of the propagation frequencies

c1 = 1510 m/s and Cz= 373 m/s, respectively. The propor-

tionality constant CO in (1) is found to be [14] CO=

2114.036. Finally the average mass densities of the material

and air media are taken to be plos103 kg/m3 and pzO=

1.295 kg/m3, respectively.

In Fig. 3 the variation of the pO(r, t) free-space contri-

bution is presented on the surface of the dielectric sphere

at two different observation points. The transient phenom-

enon lasts 102.7 ps from the beginning of the microwave

pulse. There is a significant difference between the two

waveforms.

In order to determine the acoustic cavity mode contribu-

tions, the complex CO=U.l (n =0,1,2, . . . ; 1=1,2, ...)

roots of (37) should be determined in the first place. In

Fig. 4 the spectra of the complex a = u., resonance fre-

quencies are presented on a complex plane. The lowest

mode is found to be very close to the resonance frequency

of the stress-free surface sphere, that is,

(44)

which is in agreement with the predictions of Lin [17].

Furthermore if the lowest mode is considered separately,

the corresponding. damped wave packet from (41) and (42)

is determined to be proportional to

( (– e – “~’TP sin cpol– sin CPol– ti&TP ))sinc+$l] (45)

where t> TP, tiol = Ofl + ju[l, and 901 is a phase constant.

I
*I+

107-

1,05

.

n.~7n~8 !=,

p

..6 ,
,,5

\
“.4

n=3 \\\\

n,2

‘=1 ‘G*+”.
/

/

/’

n!o

, , , , ( I ( .,,, ,,
20 40 60 80 #$KH,~

Fig. 4, Complex resonance frequencies for c1 = 1510 m/s, Cz = 373

m/s, and a = 7 (cm.

Then computing the amplitude of this waveform by apply-

ing standard trigonometry rules, jt is found that the ex-

pression

[ 1
l/~

e
–&(t-T,,) e–zdm~p_2cos (@jlTp)e–o&Tp+1 (46)

determines the dependence of the wave amplitude on the

incident pulse width. Therefore when TP -0 the induced

amplitude is zero. Provided that ti~l ,CCc&, when U&TP = r

the dominant acoustic mode amplitude takes it peak value.

If the acoustic losses were also incorporated in the analy-

sis, then & would be significantly larger than those

presented in Fig. 4. In this case when U~lTP >>1 the wave

amplitude becomes independent of the pulse width TP.

Observe that in qualitative terms, the result present in (46)

for the dependence of the dominant mode amplitude on

the incident pulse width is in very good agreement with the

experimental results obtained by Chou and Guy [3]. Notice

that the incident microwave peak power hearing threshold

is proportional to the inverse of the quantity given in (46).

Therefore, for narrow incident pulses, higher peak powers

are needed to cause acoustic sensation, while when TP is

sufficiently large the acoustic threshold is almost indepen-

dent of the pulse width (see [3, table I]).

The pressure waveforms of the cavity mode contribu-

tions have been also computed by including all the signifi-

cant mode amplitudes. In Fig. 5 the variation of the

Pl(r, 1) pressure is presented at three specific points. The
observed waveforms are very similar with those given in

[13, fig. 3].

VI. CONCLUSIONS

The microwave-induced auditory effect in a dielectric

sphere has been analyzed in detail. It is shown that an
impinging pulse modulated microwave signal induces two

types of pressure waves inside a dielectric sphere, namely a

transient-type short-duration acoustic wave and a set of

resonance modes belonging to the spherical acoustic reso-

nator. The properties of these waves are investigated thor-

oughly.



1424 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 10, OCTOBER 1988

A p, [J,t)/Q.
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Fig. 5. Variation of the cavity mode pl(r, t) contribution with time at

three points of the dielectric sphere.

APPENDIX

EXPRESSIONS FOR THE Fl(r, 8) AND ~2(r, 0) FUNCTIONS

l~(r)l’= --$j[cos2@1(r, d)+sin2@2(r,d)] (Al)

[

2

~l(~>o) = E fo(n).fl(~j~>e)
~=1 1
[ I

2

+ i fo(~).f’(~>~>e) (A2)
~=1

[

2

F2(r,6) = f jo(n)f3(n, r,d)

1
(A3)

~=1

fo(~)=(-j)n 2n+1n(n+l)
(A4)

f,(~>~,~)=%
j~(WIK~)

P;(cose)(n’+n)
r

(A5)

P:(cos o )
./2(n, r,0)=dn ~in~ ~n(mKr)

[

jn(?nKr)

– c. P~’(cos O)sin O rnKj; (nzKr) +

r 1
(A6)

~3(~, r,o)=dn~~’(cOS6 )Sin8~n(~Kr)

P;(COS9)
— Cn

sin 8

(A7)

jn(Ka)[XhL2J(X) ]~a–h~2)(Ka) [Xj. (X)]La

c“ = ‘6,jn(~K@ [Xh(2)(X)]& @2)( Kcr)[xjn(x)]:a

dfl

z,
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[14]

[15]
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